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1 Introduction 

Supersymmetric grand unified (GUT) texture models have had considerable 
success reproducing the existing data for fermion masses and mixings, start- 
ing from a restricted set of effective operators at the GUT scale. Two generic 
features of such schemes suggest that it may be desirable, or even necessary, 
to eventually embed these structures into full-fledged superstring models. 

The first feature has to do with how SUSY GUT texture models generate 
small numbers. Fermion masses and mixings exhibit a number of distinct 
hierarchies, characterized by ratios in the range roughly l/10 - l/100 or even 
smaller, depending on how one (arbitrarily) chooses to parametrize them. 
A popular idea in texture models[l, 21 is that most of these small numbers 
arise, not from small Yukawa couplings, but rather from replacing Yukawas 
with higher dimension operators suppressed by powers of 

P ) adjoint 

MX 
7 (1) 

where the numerator is the vev of an adjoint scalar, assumed to be the GUT 
scale of about 1016 GeV, while Mx is an even higher mass scale, assumed to 
be roughly 10” GeV. Thus, for example, in one of the models of Anderson 
et a1[3], the following SO(10) invariant dimension 6 operator resides in the 
2-3 component of the charged fermion mass matrices: 

0 23 
45i-L 16 = 162 10 - 

45: 3 * (2) 

The superheavy scale Mx is verging on the string scale, which is estimated 
iXS Mstring -5 x 10i7GeV Xg,tring. At any rate, the use of nonrenormalizable 
operators sensitive to such high scales entails the risk of being overwhelmed 
by “Planck slop”. Since superstring theory is the only known method of 
controlling Planck slop, it may be necessary to invoke strings in order to 
make valid statements about SUSY GUT textures. 

The second feature of texture models which strongly suggests a string 
interpretation are the textures themselves. The usefulness of these schemes 
requires that the number of effective GUT scale operators which make the 
dominant contributions to the fermion masjmatrices is rather few. In par- 
ticular, the number of effective operators up to, say, dimension 6, should 
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be considerably less than the full set of effective operators allowed by the 
unbroken gauge symmetries at the GUT scale. This requires that there are 
nontrivial flavor-sensitive selection rules, which provide the extra contraints 
and thus the desired texture. Superstrings are an obvious source for such 
selection rules. 

In string models, couplings correspond to correlators of vertex operators 
on the worldsheet, and their vanishing depends on worldsheet symmetries. 
Since many of these symmetries do not correspond to unbroken gauge sym- 
metries in spacetime, the effective spacetime field theory below the string 
scale is generically subject to a number of selection rules. Of course, it is 
possible to avoid, strings and obtain selection rules from extra broken V( l)‘s, 
discrete symmetries, R symmetries, and the like. However superstring theory 
not only provides similar symmetries and selection rules, but also provides 
a more fundamental understanding of them. This is true even though we at 
present have no clue how nonperturbative string dynamics selects among the 
vast number of perturbatively degenerate string vacua. 

To see why, observe that concrete phenomenological inputs can greatly 
narrow the range of viable string vacua. Given the SUSY GUT texture 
framework, as well as improved low energy data, one can obtain very specific 
guidance for string model building. What is required is that one trans- 
late the phenomenological constraints on the GUT scale effective Lagrangian 
into constraints on the world sheet symmetries of the string models. Then, 
for each particular string model, which fixes a choice of the string vacuum, 
one can hope to extract relationships between, say, the worldsheet structure 
that guarantees three light generations of chiral fermions, and the worldsheet 
structure that guarantees one of the observed hierarchies in the fermion mass 
matrices. Any such relationships (if valid) would be a profound new insight 
into particle physics. It is also important to note that such relationships de- 
pend only on order-of-magnitude computation, and thus do not (necessarily) 
require the ability to make precise determinations of string moduli. 

2 Superstring GUT’s 

Historically, superstring model builders have made very little contact with 
conventional GUT’s. One of the reasons for this is that, in string theory, 
gauge coupling unification occurs at the string scale independently of whether 
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or not matter fields assemble into GUT multiplets[4]. Thus the agreement 
between LEP data and minimal SUSY gauge coupling unification does not 
signify the existence of GUT’s in a string context[5,6, 71. Many quasi-realistic 
string models thus attempt to identify the gauge coupling unification scale 
with the string scale, either by raising the former or by effectively lowering 
the latter, and do not obviously present two independent superheavy scales. 

A technically important reason why so little effort has been put into 
superstring GUT’s is the fact that most string model constructions simply 
do not allow the appearance of adjoint GUT scalars in the massless spectrum 
at the string scale. Thus conventional GUT symmetry-breaking vevs are not 
available. This is because in most string constructions the GUT gauge group 
is realized at Kac-Moody level one. The Kac-Moody level is a positive integer 
label needed to specify unitary irreducible representations (irreps) when Lie 
algebras are combined with worldsheet conformal symmetry to produce Kac- 
Moody algebras. For fixed level there is a constraint on the allowed irreps 
for massless matter fields. Thus at level one the allowed irreps of SU(5) and 
SO(l0) are given by: 

SU(5) : 1,5,5,io, io 
SO( 10) : 1,10,16,i6 . 

A more precise statement is that massless adjoint scalars are incompatible 
with the presence of massless chiral fermions in level one string models[8]. 

It is possible to build level one string models with unconventional struc- 
tures which are similar to GUT’s. The flipped SU(5) model[9] is the most 
developed example of this; there the breaking of SU(5) is accomplished by 
vevs of a Higgs 10, rather than the adjoint. Since the SU(3) x SU(2) singlet 
in the 10 has nonzero hypercharge, flipped SU(5) requires an extra 1/(l) and 
a nonstandard treatment of hypercharge. While it is not a pure GUT, flipped 
SU(5) is a useful prototype for quasi-realistic models in the free fermionic 
superstring construction. Indeed we have borrowed some of its worldsheet 
structure in building the superstring GUT’s described below. 

Yet another reason why superstring GUT’s have been neglected is the fear 
of exotics. A conventional superstring GUT requires a string construction 
with Kac-Moody level at least two. Higher levels are required if scalars in 
other non-fundamental irreps are desired. For example, to obtain a mass- 
less 126 of SO( 10) would require[ lo] a string model with SO(l0) at level 2 
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five. Higher levels introduce the possibility that modular invariance of the 
string model will require the presence of other exotic scalars whenever, say, 
the adjoint or the 126 are present. Indeed the simplest Kac-Moody modular 
invariants, the left-right symmetric diagonal invariants, require that all al- 
lowed irreps do in fact appear in the spectrum. Thus one might worry that 
for SO(10) at 1 eve1 two the 54 would appear in addition to the 45, while at 
level five the 54, 120, 144, etc would appear in addition to the 45 and 126. 
We will show below that this expectation is false for fermionic string models, 
and thus that there is no problem with unwanted exotics. 

There are two basic examples of superstring GUT constructions in the 
literature. The first, due to Lewellen[8], is a free fermionic string model 
based on the minimal embedding of SO(l0) at Kac-Moody level two, with 
adjoint scalars and chiral fermions. The second, due to Font, Ibanez, and 
Quevedo[lO], is an orbifold construction that realizes the GUT group G at 
level n starting with n copies of G at level one. We do not know of any 
particular reason to prefer one of these constructions over the other. However, 
we have chosen to base our exploration of superstring GUT’s on Lewellen’s 
free fermionic string model. 

We have not addressed the question of how a GUT scale of 1016 GeV gets 
generated in our models, separate from the string scale. Understanding the 
hierarchy of scales in string theory presumably requires an understanding of 
strong dynamics. 

3 Model Building 

Four dimensional closed free fermionic string models are heterotic superstring 
vacua described by a worldsheet lagrangian for 64 real (Majorana-Weyl) free 
fermions, together with the bosons that embed the 4-d spacetime, and ghosts. 
This construction is described in detail in refs [ll, 12, 13, 141; we will, for 
the most part, follow the notation and conventions of refs [14, 81. Models are 
conveniently specified by their one-loop partition functions; these involve a 
sum over spin structures: 

z fermion = c cp”zpQ 7 (3) 
ad3 

where the CF’s are numerical coefficients, while a and /3 are 64-dimensional 
vectors labelling different choices of boundary conditions for the fermions 
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around the two independent cycles of the worldsheet torus. For each real 
fermion there are two possible choices of boundary conditions around a given 
cycle: either periodic (Ramond) or antiperiodic (Neveu-Schwarz). However 
for fixed cr and p the real fermions always pair up into either Majorana or 
Weyl fermions; if a particular Weyl pairing occurs consistently across all a 
and ,B, then this pair can be regarded as a single complez fermion. For such 
complex fermions more general boundary conditions -any rational “twists”- 
are then allowed[ll, 13, 151. A useful notation denotes a pair of Ramond 
fermions as a -l/2 twist, while a general m/n twist indicates the complex 
fermion boundary condition 

\k + exp 2ni 111 \k . 
[ I n (4) 

It is convenient to regard the partition function as a sum over physical 
“sectors” labelled by the o’s. The contribution of any sector a to the partition 
function contains a generalized GSO projection operator. Up to an overall 
constant, this is given by: 

C Cp” exp [-2niP. iir(o)] , 
P 

. 
where N(o) is the fermion number operator defined in the sector a. There L 
are subtleties in the proper definition of N(a) for real Ramond fermions; 
these are discussed in ref [ 141. 

Thus building a fermionic string model amounts to choosing an appropri- 
ate set of o’s, p’s, and C;‘s, then performing the GSO projections to find the 
physical spectrum. These choices are greatly constrained by the requirement 
of modular invariance of the one-loop partition function; in addition, higher 
loop modular invariance imposes a factorization condition on the Cp”‘s. To- 
gether these requirements imply that the {p} are the same set of vectors as 
the {a}, and that, if two sectors cri and a2 appear in the partition function, 
then the sector al + ~2 must also appear. These facts allow one to specify 
the full set of a’s and p’s by a list of “basis vectors”, denoted V;. 

Of the 64 real fermions, 20 are right-moving and 44 are left-moving. The 
first pair of right-movers are spacetime fermions (corresponding to the two 
transverse directions in 4-d), while the other 18 right-movers are “internal”. 
The requirement of a worldsheet supercurrent contructed out of the right- 
movers and the spacetime bosons is a consistency constraint on model build- 
ing. As a result there is always a sector -denoted VI- that contains massless 
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gravitinos, corresponding to an N=4 spacetime supersymmetry before the 
GSO projection. After the projection one may have N=4, N=2, N=l, or no 
spacetime SUSY at all. We will only consider models with N=l spacetime 
SUSY. 

Fermionic string models always contain an “untwisted sector”, with 32 
Neveu-Schwarz Weyl fermions. The untwisted sector contains the graviton, 
dilaton, and antisymmetric tensor field. It generally also contains gauge 
bosons, and massless scalars including gauge-singlet moduli. 

The first step in building a fermionic string model for a SUSY GUT is 
to find an embedding of the GUT root lattice in the left-moving fermions. 
As discussed in ref [8], this means identifying the root vectors with vectors 
of “fermionic charges” for n complex left-movers, where n is 2 the rank 
of the gauge group. The fermionic charge of the Neveu-Schwarz vacuum 
is 0; it is fl for an excited Neveu-Schwarz fermion/antifermion. For the 
Ramond vacuum the charge is &l/2, corresponding to the two degenerate 
vacuum states. Thus using complex Neveu-Schwarz and Ramond fermions, 
root vectors have components taking only the values 0, &l/2, and fl. The 
length-squared of each root vector is equal to 2/cC, where Ic is the Kac-Moody 
level. 

Consider a particular example. A level two embedding of SO( 10) using, 
let’s say, only Neveu-Schwarz and Ramond fermions, requires that we find 5 
simple roots, each with length-squared one, whose inner products reproduce 
the Cartan matrix of SO( lo), and whose components take only the values 0, 
*l/2, and fl. Such embeddings exist for any number of complex fermions 
> 6 (although SO(l0) h as rank five, there is no solution with only 5 complex 
fermions). 

The minimal embedding, using 6 complex fermions, has simple roots given 
by 181: 

w,uu% ($-;,-;,-$,O,O), 
w4Lwk0), (o,+f,o,-g,, 

(0 1 -f,o, f,-f). ’ 2’ 

Since there is an additional vector orthogonal to the space spanned by these 
roots, these 6 fermions actually embed SO( 10) x I/( 1). 

The maximal nontrivial embedding, using 10 complex fermions, has sim- 
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ple roots given by: 

(~,~,-~,-~,0,0,0,0,0,0), 
(0,O 1. 1 ++0,0,0,0), ’ 2’2’ 

(O,O,O,O,~,~,-~,-~,O,O), 
(0,0,0,0,0,0,~,~,~,~>, 

(O,O,O, w, 0, ;, f, -+, -f,, 
We adopt the convention that the first 2n real left-movers of our string 

models will correspond to the n complex fermions that define an embedding. 
Having chosen a.particuiar embedding, the next challenge is to find a set of 
basis vectors, consistent with modular invariance and the GSO projections, 
such that we generate sectors with massless vector states whose fermionic 
charges reproduce the root vectors of the embedding. Assuming that we 
can in fact produce all the gauge bosons of some GUT group, we are then 
guaranteed that all physical states will assemble into irreps of the GUT group. 
Note that it is a simple matter to translate from the Dynkin basis to the basis 
defined by the simple roots written as fermionic charge vectors. Thus we can 
determine which irreps physical states belong to by simply mapping their 
weights back to the Dynkin basis. 

4 Three Generat ions 

We have begun an exploration of level two SO( 10) and SU( 5) fermionic string 
GUT models which employ Lewellen’s minimal embedding of SO( 10). So far 
this search has been limited to models whose fermions are Neveu-Schwarz, 
Ramond, or complex with &l/4 twists. Since the introduction of other ra- 
tional twists loosens the modular invariance constraints, we expect that we 
have merely scratched the surface of possible models with this embedding. 

We find that the requirement of three light chiral generations ( three 16~‘s 
in SO(10) ) is very restrictive in our models, much more so than, e.g., the 
requirement of adjoint scalars. This is not surprising, since other fermionic 
string model builders have encountered the same difficulty[9, 16, 171. From 
an exhaustive search, we find that there exist no examples of three generation 
level two SO(l0) models, with the minimal embedding, using only Neveu- 
Schwarz and Ramond fermions. Thus three generations requires fermions 
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with other twists. 
A useful starting point for constructing three generation models is the 

22 x 22 symmetric orbifold structure described by Faraggi in ref [18]. As 
pointed out in [18, 191, this structure is present in all known level one 
fermionic string models that have three generations. The orbifold structure 
consists of two 22 twists 8r,&, acting symmetrically on left and right-moving 
[SO(4)]3 1 a tt’ ices. From now on it will be very convenient to write 0, 1 for 
Neveu-Schwarz and Ramond fermions, respectively. In this notation: 

4 = (1100)(1100)(0000) 

e2 = (0000)(0011)(1100) . 

When this structure is realized in a full fermionic string model, the partition 
function can obviously be decomposed into a sum of four pieces with respect 
to this orbifold: an untwisted sector, and the three twisted sectors 01, 42, 
and 0i&. For level one models, there is a straightforward way -the “NAHE” 
set- of constructing basis vectors such that one chiral generation resides in 
each of the three twisted sectors. It is quite possible that there are many 
unrelated ways of obtaining three generation fermionic string GUT’s, but we 
have so far found it convenient to adapt structures similar to the NAHE set 
in our GUT models. 

This orbifold trick for obtaining three generations is not, strictly speaking, 
compatible with realizing SO(10) at Kac-Moody level two. The left-moving 
[SO(4)13 lattice cannot, of course, overlap with the 12 left-mover slots re- 
served for the SO(l0) embedding. In addition, for a sector containing a 
massless chiral 16~ fermion all of the left-moving structure is rather severely 
constrained by the requirements of SO(l0) and modular invariance. Fur- 
thermore, even if one realizes the orbifold structure in three twisted sectors 
(which one might as well take to be three basis vectors), the additional basis 
vectors which produce SO(10) gauge bosons will not respect the left-right 
symmetry of the 22 x 22 orbifold. 

In spite of these difficulties, we have found ways to simultaneously realize 
both SO(10) 1 eve1 two and obtain three generations. This is demonstrated 
in the next section with a specific model. 



5 Features of Superstring GUT’s 

Since we have only a sampling of models, and have made particular choices 
of embedding, level, gauge group, and string construction, it would be im- 
prudent to try to make any general statements about the properties of super- 
string GUT’s. Instead, we will be content making a few observations about 
features of our models. 

As an example, we list below the basis vectors of a particular level two 
SO( 10) fermionic string model. Here 0, 1 denote real Neveu-Schwarz or 
Ramond fermions, and f denotes a real fermion which pairs with another 
f real fermion to make a complex fermion with &l/4 twist. The 20 right- 
movers are separated from the 44 left-movers by a double vertical line. A 
vertical line separates out the 12 left-movers that embed the SO( 10) weights. 
The first two right-movers are the spacetime fermions. 

Vo is required in all fermionic string models by modular invariance. The 
VI sector contains the gravitino, as already discussed. Superpartners of states 
in some sector a will be found in the sector VI + a. The 45 massless gauge 
bosons of SO( 10) 1 eve1 two are contained in the untwisted sector, V2, V3, V., 
v,+v,, v,+v,, v,+v,, and v,+v,+v,. 

v, = (11111111111111111111~~111111111111~11111111111111111111111111111111) 

v, = (11 100100100100100100~~000000000000~00000000000000000000000000000000) 

v, = (00000000000000000000~~ 111111110000 I111 11111000000000000000000000000) 

v, = (00000000000000000000~~000000000000~00001111111 100000000000000000000) 

v, = (00000000000000000000~~ 11000011111 l/l 1001100110011000000000000000000) 

v, = (11100100010010010010(1111100001100~10101010101010111000000000000000) 

v, = (11010010100100001001~~111100001100~101001011010010000010000++--++++) 

h = (110010010010011001001(111100001100~11110000111100000000110000000000) 

v, = (00110110110110000000~~000000000000~01010101010101000001000000000000) 

v, = (00,-0+-0++1++11++1+*~~00000000++++~00001111000011001001++++++++0000) 

This type of model can always be transformed into a similar level two 
SU(5) model, either by adding a basis vector or altering existing ones. This 
is because the 24 roots of SU(5) contained-in SO(l0) appear precisely in 
the gauge boson sectors listed above that do not contain Vs. It is tempting 
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to suppose that such SU(5) models may retain the fermion mass texture of 
their SO(10) p arent models virtually intact. 

Three generations of 16~ fermions are contained in VS, VG, VT, plus 3 x 6 
additional sectors obtained by adding V., Vd, V2+V3, &+VI, V3+V4, or 
V2+V3+V4 to these (the massless states in V3+VT,6,, are GSO projected 
out). To describe the [SO(4)13 lattice of the 22 x 22 orbifold structure, 
let (r-1.. .r2s} denote the right-movers, and {Ii . . .1.,4} the left-movers. Then 
the right and left-moving [SO(4)13 lattices consists of the fermions 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(I 14, IL 16, 17, IL 18, 19, 1111111) 20, 22, 24, 25, 26, 27~ 32 

If we were to truncate this model to include only Vi, VI, and v5,6,7, then it 
would be apparent that three sets of chiral fermions reside in the three twisted 
sectors of a 22 x 22 orbifold. However this structure does not guarantee three 
generations in the full model. In fact it is difficult to avoid generating extra 
chiral fermions in other twisted sectors. This has proven so far to be the 
most severe constraint on model building. 

The observable gauge group of this model is SO( 10) x [U( 1)14. The hidden 
sector gauge group is [SU(2)13 x [U(1)12. The hidden sector gauge group, 
hidden sector matter content, and the number of extra U( l)‘s, are very model 
dependent. However it appears that the rank of the hidden sector gauge 
group is always ,< 5. 

This model contains a 45 of adjoint scalars contained in sector Vs and 
the seven other sectors obtained by adding the gauge boson sectors to Vs. 
Although this model has 246 different sectors that contain massless particles 
(before the GSO projections), there are no additional 45’s and no 54’s. This 
seems to be a robust feature: singlets, 10’s, and 16’s proliferate in these 
models, but 45’s and 54’s appear once, twice, or not at all. This is easily 
explained by writing the weights of various irreps in our fermionic charge 
basis. One finds that the 45’s and 54’s have weights which require Neveu- 
Schwarz excited fermions and antifermions. These make large contributions 
to the mass formula, and it then becomes difficult to satisfy all the constraints 
while keeping these irreps massless. 

The above argument should generalize for (at least) most higher level 
fermionic string models. Thus we conclude ihat these models do not have 
a generic problem with exotics -i.e., large massless irreps tend not to occur. 
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This fact may also imply that fermionic string models cannot embed SO( 10) 
GUT models which, e.g., solve the doublet-triplet splitting problem[20] by 
introducing several 45’s and 54’s. 

The most interesting feature of the fermionic string GUT’s which we have 
looked at so far, is that they naturally possess one of the key properties of 
most SUSY GUT texture schemes. Unlike level one models, our models quite 
often have only a single set of Higgs in the fundamental which is allowed by 
fermionic charge conservation[ll, 211 to have a Yukawa coupling to chiral 
fermions. One then observes that this Higgs generates at most one Yukawa 
coupling, that of the (by definition) third generation: 

For example, in the model above, there is a single 10 with weights dis- 
tributed among the untwisted sector, V3, V4, V2+V4, V3+V4, and Vz+V3+V4. 
All of these states have a Neveu-Schwarz fermion/antifermion excitation in 
rg/rrZ. Conservation of fermionic charge then tells us that the only allowed 
Yukawa coupling to this 10 is the diagonal coupling to the fermion generation 
in vs. In this particular model that is not the end of the story, because the 
16~ in Vi also carries an extra U(1) charge not carried by the Higgs 10, and 
so the third generation Yukawa is also killed. However we have found that 
the question of whether the third generation Yukawa survives or not is very 
model dependent. 

It is very gratifying to see the key feature of most texture schemes appear 
so naturally in fermionic string GUT’s Furthermore we see that this feature 
is intimately related to the structure of the chiral fermion sectors which was 
needed to produce three generations! 

Level one models with three generations have similar properties, although 
they typically contain several Higgs, each with only one allowed Yukawa. 
One must also be extremely cautious about attaching too much significance 
to Yukawas. String models generate operators which are higher dimension 
but contain scalars that can get Planck scale vevs. Such terms are then 
unsuppressed and contribute to the GUT scale effective action just like an 
ordinary Yukawa. Clearly we need a detailed analysis of higher dimension 
operators in fermionic string GUT models before we can draw any definite 
conclusions. Further work is also needed to understand fermion mixings and 
the sources of masses for the first and second generations. 
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